ICVD®
Integrated Continuously Variable Drive

www.icvd.walterscheid.com
CLEAR DEMANDS!

For certain applications, self-propelled agricultural and construction machinery, such as wheeled and telescopic loaders, forestry machines, combine harvesters and also choppers, not only need to generate high tractive forces, but also have to be capable of covering long distances at the highest possible speed.

Up to now, both of these functions have been realised by hydrostatic drives with manual gearboxes. This concept has proven to be less than optimum in practice, since the machine usually has to be at a standstill to switch between gears, making the procedure both inconvenient and time-consuming.

Continuous variability is what is called for here in practice – with a variable drive concept and substantially greater operating convenience for the driver.

OUR SOLUTION!

Walterscheid developing a continuously variable, hydrostatic travel drive for self-propelled agricultural and construction machinery. The ICVD® (Integrated Continuously Variable Drive) makes it possible to drive through the entire speed range without interrupting the tractive force.

The ICVD® is thus a symbiosis of time-proven drive concepts, combining their advantages, but without having to accept the drawbacks of the old solutions.

The ICVD® is the only continuously variable, hydrostatic travel drive to use 45° large-angle technology and comprises a gearbox, a hydraulic motor and a control unit.
CONTENT

Characteristics 4
Technical Data 5 – 6
Hydraulic Control 7

ICVD® GT-S1 N 233V 8 – 9
ICVD® GT-S1 A 233V 10 – 11
ICVD® GT-S1 A 233V-K 12 – 13
ICVD® GT-S1 N 370V 14 – 15
ICVD® GT-S1 N 370V-K 16 – 17

Safety 18
Data Sheet 19
Type: Variable-displacement axial piston motor of bent-axis design for hydrostatic drives with open or closed circuit.

The ICVD® is a continuously variable, hydrostatic travel drive, comprising mechanical gearbox, hydraulic motor and control unit.

BENEFITS

- Continuously variable hydrostatic travel drive
- Wider conversion range with large-angle technology
- Optimised efficiency due to integrated hydrostatic motor with large-angle technology
- Low noise
- Reduced fuel consumption
- Reduced tyre wear
TECHNICAL DATA

HYDRAULIC FLUIDS

The operating data and ratings are based on operation with hydraulic fluids containing oxidation, rust and foam inhibitors. These fluids must display good thermal and hydrolytic stability in order to prevent wear, erosion and corrosion of the internal components. The ICVD® can also be operated using fire-resistant hydraulic fluids, but under modified conditions. Hydraulic fluids may not be mixed. Contact Walterscheid service for further information.

Suitable hydraulic fluids
- Hydraulic fluids to DIN 51 524, Part 2 (HM)
- Hydraulic fluids to DIN 51 524, Part 3 (HV)
- API CD, CE and CF engine oils to SAE J183
- M2C33F or G automatic transmission fluids (ATF)
- Multi-purpose agricultural oils (STOU)

Temperature
The temperature and viscosity requirements must be met. The temperature should be within the limits indicated below. The minimum temperature does not affect the motor components, but may have a negative impact on power transmission. The maximum temperature is dependent on the properties of the motor material. It must not be exceeded and is usually measured at the leakage-oil outlet.

Temperature range
- t min. = –20 °C Briefly, when starting cold
- t max. = 115 °C Briefly

Viscosity
The viscosity should be within the recommended range (see below) to achieve high efficiency and a long bearing service life. The minimum viscosity may only occur briefly at the maximum ambient temperature. The maximum viscosity may only occur under cold-starting conditions, i.e. at appropriately limited rpm speeds until the system has warmed up.

Viscosity range
- Minimum = 7 mm²/s Briefly
- Recommended = 12-80 mm²/s Recommended operating viscosity
- Maximum = 1,600 mm²/s Briefly, when starting cold

FILTERING

To prevent premature wear, it is essential that the hydrostatic drive system be charged and operated with clean hydraulic fluid only. The hydraulic fluid is considered to be a component of the overall machine. The filter system to be used must guarantee cleanliness class 20/17/12 or better to ISO 4406 under normal operating conditions.

The choice of filter is dependent on various factors, including the amount of dirt penetrating the system, the formation of dirt particles in the system, the necessary cleanliness of the fluid and the desired maintenance interval.

The filters must be selected in such a way that the above-mentioned requirements are met, efficiency and performance being the underlying criteria. The respective demands on filtering in different systems must be determined by means of trials. The prerequisites for a definitive decision on the filter system are monitoring of the prototypes, and assessment of the components and performance, throughout the entire test period.

CAUTION! INDEPENDENT BRAKE SYSTEM

Loss of the power connection in the driveline of a hydrostatic system during an acceleration or braking phase, or in the neutral position of the drive system, can lead to a loss of hydrostatic braking capacity. For this reason, a redundant brake system that is independent of the hydrostatic brake system must be installed. The redundant system must be in a position to brake the moving vehicle and/or to serve as a holding brake.

GEAR OIL

The ICVD® units are filled with gear oil before shipping. Any regular gear oil can be used that meets the following specifications:

Gear oil grade: SAE 90 EP oder 85W-90EP
Performance Category: API-GL-5
Specification: MIL-L-2105

The gear oil can be mixed with any other high-quality mineral oil complying with the above API Performance Category and MIL Specification.

Quantity:
The quantity of gear oil is approx. 4 l, although this varies, depending on the selected installation position and transmission ratio. Kindly refer to the customer drawing for the oil quantity.

Oil change:
First oil change: 500 hours of operation after putting the vehicle into service. All other oil changes: after every 1,500 hours of operation, but not less than once per year.

Oil disposal:
Gear oils based on mineral oil are not hazardous substances within the meaning of the German Ordinance on Hazardous Working Substances. They can be disposed of as waste oil and recycled.
THE TECHNICAL DATA

HYDRAULIC FLUID RESERVOIR

The air contained in the hydraulic fluid is eliminated in the hydraulic fluid reservoir during the dwell time. Fluctuations in volume are also equalised. These can be caused by heating of the hydraulic fluid (expansion), cooling of the hydraulic fluid (contraction), actuation of differential cylinders.

The hydraulic fluid reservoir must be capable of equalising the volumetric flow fluctuations under all operating conditions. The minimum reservoir capacity in litres should be 5/8 of the maximum charging-pump volumetric flow in l/min. The minimum fluid content to be provided is 1/2 of the charging-pump volumetric flow in l/min. This results in a dwell time of the fluid in the reservoir of 30 seconds, allowing the air contained in the hydraulic fluid to rise to the surface of the fluid. If a reservoir is designed according to these guide values, a sufficient equalising volume is available for most systems/applications with closed reservoir (e.g. without breather).

The suction port leading to the charging pump must be located above the reservoir bottom in order to prevent the aspiration of sediment. The return line port on the reservoir must be located below the fluid surface and as far as possible away from the suction port. Air elimination is improved by inclined, perforated interceptor plates, installed between the return and suction ports.

POWER UNIT

Type
- Variable-displacement axial piston motor of bent-axis design for a closed or open circuit
- Without control pressure (initial position), the power unit is at the maximum pivoting angle (closed circuit)

Sense of rotation
- Clockwise and counterclockwise

Geometric displacement volume 233
- Max. 233 cm³/rev.
- Min. 40 cm³/rev.
- Optionally 0 cm³/rev.

Continuous speed
- At max. pivoting angle: 1,720 rpm
- At min. pivoting angle: 3,860 rpm (°7)

Maximum speed (briefly):
- At max. pivoting angle: 2,200 rpm
- At min. pivoting angle: 5,125 rpm (°7)

Pivoting angle
- Max. 45°, min. 7°, optionally 0°
- Theoretical specific torque: 3.7 Nm/bar

Geometric displacement volume 370
- Max. 370 cm³/rev.
- Min. 64 cm³/rev. (°7)
- Optionally 0 cm³/rev.

Continuous speed
- At max. pivoting angle: 1,490 rpm
- At min. pivoting angle: 3,295 rpm (°7)

Maximum speed (briefly):
- At max. pivoting angle: 1,820 rpm
- At min. pivoting angle: 4,330 rpm (°7)

Pivoting angle
- Max. 45°, min. 7°, optionally 0°
- Theoretical specific torque: 5.9 Nm/bar

HYDRAULIC PARAMETERS

Operating pressure
- Working pressure: max. p 480 bar
- Max. pressure, briefly: p 510 bar

Filtering
- Required cleanliness class to ISO 4406: 20/17/12 or better

Housing pressure
- Max. continuous pressure: 2 bar; briefly 5 bar
1. Proportional control (electric or hydraulic version)
2. Stroke adjustment of the swivel bracket
3. Pressure limiting valve, purging (optional)
4. Directional valve, purging (optional)
5. Pilot valve for control pressure switching (optional)
6. PCOR (optional)
ICVD® GT-S1 N 233V

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission ratio i</td>
<td>$0.94 - 1.6$</td>
</tr>
<tr>
<td>Torque at the output shaft M_d</td>
<td>$1,280 - 2,560$ Nm</td>
</tr>
<tr>
<td>Max. drive shaft operating angle 1</td>
<td>$< 3°$ and Z-bend</td>
</tr>
<tr>
<td>Drive shaft flange</td>
<td>DIN ISO 7646 120 x 8 x 10</td>
</tr>
<tr>
<td>Max. operating pressure</td>
<td>480 bar</td>
</tr>
<tr>
<td>Installation position</td>
<td>Vertical 1</td>
</tr>
<tr>
<td>Mass (without fluids) m</td>
<td>Approx. 140 kg</td>
</tr>
<tr>
<td>Transmission oil quantity</td>
<td>Approx. 4 l</td>
</tr>
<tr>
<td>Transmission oil grade</td>
<td>SAE 90 API-GL-5</td>
</tr>
<tr>
<td>Hydraulic fluid quantity</td>
<td>Approx. 15 l</td>
</tr>
</tbody>
</table>

1 Other versions on request

Kinematic Diagram

- **A** and **B**
- **DIRECTION OF FLOW**
 - Sense of rotation: Port A, Port B
 - Clockwise (CW): Outlet, Inlet
 - Counterclockwise (CCW): Inlet, Outlet

Definition of the sense of rotation: looking at the high-pressure ports on the control unit cover.

MAINTENANCE AND OIL CHANGE

- Oil check after 500 hours of operation
- Oil change after 1,500 hours of operation or once per year
DIMENSIONS – ICVD® GT-S1 N 233V

- High-pressure ports A + B: SAE 1" (6,000 psi), useable depth of thread 18 mm
- Leakage-oil port T: M 26 x 1.5
- Supply pressure ports PHD + Ps: M 14 x 1.5
- Measuring ports MA, MB, M3: M 14 x 1.5
- Measuring port M4: M 10 x 1

Optional:
- Proportional control valve PV1: AMP-Junior
- Travelling direction valve MV2: AMP-Junior

Kindly request a binding installation drawing before finalising the design.
ICVD® GT-S1 A 233V

Transmission ratio i	0.94 – 1.6
Torque at the output shaft M_d | 1,600 – 3,200 Nm
Max. drive shaft operating angle ¹) | $< 3°$ and Z-bend
Drive shaft flange
Front | DIN ISO 7646
Rear ¹) | $120 \times 8 \times 10$
Max. operating pressure | 480 bar
Installation position | Vertical ³)
Mass (without fluids) m | Approx. 150 kg
Transmission oil quantity | Approx. 3.7 l
Transmission oil grade | SAE 90 API-GL-5
Hydraulic fluid quantity | Approx. 15 l

¹) other versions on request

CONNECTION FOR SUPPLEMENTARY MOTOR

Connection to ISO 1

- **Displacement volume**: $23 – 60 \text{ cm}^3$
- **Flange**: ISO 3019-2
- **Inside profile, max.**: DIN 5480-N30 x 2 x 30 x 14 x 9H

DIRECTION OF FLOW

- **Sense of rotation**
 - Port A: Clockwise (CW)
 - Port B: Counterclockwise (CCW)
- **Inlet**: Outlet
- **Outlet**: Inlet

Definition of the sense of rotation: looking at the high-pressure ports on the control unit cover.

MAINTENANCE AND OIL CHANGE

- **Oil check after 500 hours of operation**
- **Oil change after 1,500 hours of operation or once per year**
DIMENSIONS – ICVD® GT-S1 A 233V

- High-pressure ports A + B: SAE 1" (6,000 psi), useable depth of thread 18 mm
- Leakage-oil port T: M 26 x 1.5
- Supply pressure ports PHD + Ps: M 14 x 1.5
- Measuring ports MA, MB, M3: M 14 x 1.5
- Measuring port M4: M 10 x 1

Optional:
- Proportional control valve PV1: AMP-Junior
- Travelling direction valve MV2: AMP-Junior

Kindly request a binding installation drawing before finalising the design.
ICVD\textregistered GT-S1 A 233V-K

Continuously Variable Hydrostatic Drive with 45° Large-Angle Technology

Kinematic diagram

ICVD\textregistered with automatic axle disconnection module for switching between four-wheel and front-wheel drive.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission ratio i</td>
<td>0.94 – 1.6</td>
</tr>
<tr>
<td>Torque at the output shaft M_d</td>
<td>1,600 – 3,200 Nm</td>
</tr>
<tr>
<td>Max. drive shaft operating angle 1)</td>
<td>$< 3°$ and Z-bend</td>
</tr>
<tr>
<td>Drive shaft flange</td>
<td></td>
</tr>
<tr>
<td>Front</td>
<td>DIN ISO 7646</td>
</tr>
<tr>
<td>Rear 1)</td>
<td>120 x 8 x 10</td>
</tr>
<tr>
<td>Max. operating pressure</td>
<td>480 bar</td>
</tr>
<tr>
<td>Installation position</td>
<td>Vertical 1)</td>
</tr>
<tr>
<td>Mass (without fluids) m</td>
<td>Approx. 180 kg</td>
</tr>
<tr>
<td>Transmission oil quantity</td>
<td>Approx. 4.5 l</td>
</tr>
<tr>
<td>Transmission oil grade</td>
<td>SAE 90 API-GL-5</td>
</tr>
<tr>
<td>Hydraulic fluid quantity</td>
<td>Approx. 15 l</td>
</tr>
</tbody>
</table>

1) Other versions on request

CONNECTION FOR SUPPLEMENTARY MOTOR
Connection to ISO 1

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement volume V</td>
<td>23 – 60 cm3</td>
</tr>
<tr>
<td>Flange</td>
<td>ISO 3019-2</td>
</tr>
<tr>
<td>Inside profile, max.</td>
<td>DIN 5480-N30 x 2 x 30 x 14 x 9H</td>
</tr>
</tbody>
</table>

DIRECTION OF FLOW

<table>
<thead>
<tr>
<th>Sense of rotation</th>
<th>Port A</th>
<th>Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clockwise (CW)</td>
<td>Outlet</td>
<td>Inlet</td>
</tr>
<tr>
<td>Counterclockwise (CCW)</td>
<td>Inlet</td>
<td>Outlet</td>
</tr>
</tbody>
</table>

Definition of the sense of rotation: looking at the high-pressure ports on the control unit cover.

MAINTENANCE AND OIL CHANGE

<table>
<thead>
<tr>
<th>Maintenance and Oil Change</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil check after 500 hours of operation</td>
<td></td>
</tr>
<tr>
<td>Oil change after 1,500 hours of operation or once per year</td>
<td></td>
</tr>
</tbody>
</table>
DIMENSIONS – ICVD® GT-S1 A 233V-K

Optional:
- Proportional control valve PV1: AMP-Junior
- Travelling direction valve MV2: AMP-Junior
ICVD® GT-S1 N 370V

Transmission ratio i
0.96 – 1.67

Torque at the output shaft M_d
2.223 – 3.872 Nm

Max. drive shaft operating angle $^{1)}$
$< 3^\circ$ and Z-bend

Drive shaft flange both sides $^{1)}$
DIN ISO 7646
120 x 8 x 10 or 150 x 8 x 10

Max. operating pressure
480 bar

Installation position $^{1)}$
Vertical

Mass (without fluids) m
Approx. 215 kg

Transmission oil quantity
Approx. 3.0 l

Transmission oil grade
SAE 90 API-GL-5

Hydraulic fluid quantity
Approx. 15 l per motor

$^{1)}$ Other versions on request

DIRECTION OF FLOW

<table>
<thead>
<tr>
<th>Sense of rotation</th>
<th>Port A</th>
<th>Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clockwise (CW)</td>
<td>Outlet</td>
<td>Inlet</td>
</tr>
<tr>
<td>Counterclockwise (CCW)</td>
<td>Inlet</td>
<td>Outlet</td>
</tr>
</tbody>
</table>

Definition of the sense of rotation: looking at the output flange on Motor 1 (see drawing on p. 15)

MAINTENANCE AND OIL CHANGE

- Oil check after 500 hours of operation
- Oil change after 1,500 hours of operation or once per year
DIMENSIONS – ICVD® GT-S1 N 370V

- High-pressure ports A + B: SAE 1" (6,000 psi), useable depth of thread 18 mm
- Leakage-oil port T: M 26 x 1.5
- Supply pressure ports PHD + Ps: M 14 x 1.5
- Measuring ports MA, MB, M3: M 14 x 1.5
- Measuring port M4: M 10 x 1

Optional:
- Proportional control valve PV1.1: AMP-Junior
- Travelling direction valve MV2.1: AMP-Junior

Kindly request a binding installation drawing before finalising the design.
ICVD® GT-S1 N 370V-K

<table>
<thead>
<tr>
<th>Transmission ratio i</th>
<th>0.96 – 1.67</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque at the output shaft Md</td>
<td>2.223 – 3.872 Nm</td>
</tr>
<tr>
<td>Max. drive shaft operating angle ¹)</td>
<td>< 3° and Z-bend</td>
</tr>
<tr>
<td>Drive shaft flange both sides ²)</td>
<td>DIN ISO 7646 120 x 8 x 10 or 150 x 8 x 10</td>
</tr>
<tr>
<td>Max. operating pressure</td>
<td>480 bar</td>
</tr>
<tr>
<td>Installation position</td>
<td>Vertical ³)</td>
</tr>
<tr>
<td>Mass (without fluids) m</td>
<td>Approx. 215 kg</td>
</tr>
<tr>
<td>Transmission oil quantity</td>
<td>Approx. 3.0 l</td>
</tr>
<tr>
<td>Transmission oil grade</td>
<td>SAE 90 API-GL-5</td>
</tr>
<tr>
<td>Hydraulic fluid quantity</td>
<td>Approx. 15 l per motor</td>
</tr>
</tbody>
</table>

¹) Other versions on request

DIRECTION OF FLOW

<table>
<thead>
<tr>
<th>Sense of rotation</th>
<th>Port A (A1 + B2)</th>
<th>Port B (A2 + B1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clockwise (CW)</td>
<td>Outlet</td>
<td>Inlet</td>
</tr>
<tr>
<td>Counterclockwise (CCW)</td>
<td>Inlet</td>
<td>Outlet</td>
</tr>
</tbody>
</table>

Definition of the sense of rotation: looking at the output flange on Motor 1 (see drawing on p. 17)

MAINTENANCE AND OIL CHANGE

Oil check after 500 hours of operation

Oil change after 1,500 hours of operation or once per year
High-pressure ports A + B: SAE 1" (6,000 psi),
useable depth of thread 18 mm
Leakage-oil port T: M 26 x 1.5
Supply pressure ports PHD + Ps: M 14 x 1.5
Measuring ports MA, MB, M3: M 14 x 1.5
Measuring port M4: M 10 x 1

Optional:
- Proportional control valve PV1.1: AMP-Junior
- Travelling direction valve MV2.1: AMP-Junior

Kindly request a binding installation drawing before finalising the design.
SAFETY

The ICVD® is designed and built according to the state of the art to be safe in operation. However, the ICVD® can be a potential source of danger if used incorrectly, e.g. by untrained personnel, or for purposes for which it is not intended.

This can result in
- Threats to life and limb,
- Threats to machines and other property of the user,
- Threats to efficient working of the applications.

Anyone involved in the installation, commissioning, operation and maintenance of the ICVD® must have read and understood the manual. Appropriate training is offered by Walterscheid.

The ICVD® is intended for use in open or closed circuits. The persons responsible for the safety of the installation must ensure that
- only qualified persons are commissioned with work on the ICVD®,
- these persons always have the operating instructions and other product documentation at their disposal whenever they are working on or with the ICVD® and are committed to consistently comply with all these documents,
- non-qualified persons are banned from working on the ICVD® or in its vicinity.

Qualified personnel means persons who – based on their training, experience and instruction, as well as their knowledge of pertinent standards, rules, accident prevention regulations and operating conditions – have been authorised, by the person responsible for the safety of the installation, to perform the activities necessary from time to time and are in a position to recognise and avoid possible hazards in this context.

Among other things, a knowledge of First Aid measures and the local emergency facilities is also necessary. It is presupposed that the fundamental planning work for the entire installation, and all work relating to transport, assembly, installation, commissioning, maintenance and repair, are performed by personnel qualified in the respective field and/or checked by responsible specialists.

Particular attention must be paid to the following:
- The technical data and other information regarding permissible use (installation, connection, ambient and operating conditions), which are to be found in, for example, the catalogue, the contract documents, the operating manual, the rating plate data and other product documentation,
- the general construction and safety regulations,
- the local, installation-specific provisions and requirements,
- the correct use of tools, hoisting gear and transport facilities,
- the use of personal protective equipment.

If anything is unclear in this respect, particularly if detailed, product-specific information is not available, Walterscheid must be contacted to clarify the situation. When doing so, kindly always quote the Type Designation and Identification Number.

The prescribed maintenance, inspection and overhauling measures must be performed regularly in order to prevent malfunctions. Changes compared to normal operation (greater power consumption, higher temperatures or vibrations, unusual noises or smells, tripping of monitoring devices, etc.) indicate that the system is not functioning correctly. In such cases, the responsible maintenance personnel must be informed without delay in order to avoid malfunctions, which could in turn indirectly or directly bring about serious personal injury or property damage.
APPLICATION DATA

Company *	Contact *
Address *	Phone *
Date *	E-Mail *

1. Application / Model *

<table>
<thead>
<tr>
<th>2. Prime Mover</th>
<th>3. Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Type / Model</td>
<td>Max.</td>
</tr>
<tr>
<td>b) Nominal Power / Speed *</td>
<td>[kW]</td>
</tr>
<tr>
<td>c) Engine Speed for Calculation *</td>
<td>[rpm]</td>
</tr>
<tr>
<td>d) Max. Engine Speed</td>
<td>[rpm]</td>
</tr>
</tbody>
</table>

a) Weight *	[kg]
b) Front Axle Load *	[kg]
c) Tyre – Type	[mm]
d) Tyre – Static Radius *	

4. Max. Power for Hydrostatic Drive

<table>
<thead>
<tr>
<th>5. Technical Data – Hydrostatic Drive</th>
</tr>
</thead>
</table>

A. Pump

b) Max. Displacement *	[cc/rev]
c) Max. Pressure *	[bar]
d) Max. Speed	[rpm]
e) Charge Pressure *	[bar]

| f) Position > on Prime Mover | yes | no |
| > with Intermediate Gearbox (Ratio) | |

B. Hydraulic Motor

a) Type / Model	
b) Max. Displacement *	[cc/rev]
c) Max. Pressure *	[bar]
d) Max. Speed *	[rpm]

6. Technical Data – Mechanical Drive

A. Transmission Ratio

a) Axle Ratio	[1]	
b) Gearbox Ratios	1st Gear	[1]
	2nd Gear	[1]
	3rd Gear	[1]
	4th Gear	[1]

B. System Parameters

a) Max. Speed *	[kph]
b) Min. Operating Speed	[kph]
c) Max. Traction Force *	[kN]
d) Rolling Resistance	[1]
e) Max. Gradeability > unloaded	[%]
> loaded	[%]

| f) Trailer Weight | [kg] |

7. System Parameters

8. Comments (please attach additional Drafts / Diagrams)

Siehe auch www.icvd.walterscheid.com

* These fields must be completed
WALTERSCHEID INSIDE -

Our driveline, hitch and attachment systems provide for higher efficiencies of agricultural and construction machinery.

Innovations and technologies from Walterscheid such as the continuously variable hydrostatic travel drive increase the efficiency of agricultural and constructional machinery. In addition, our systems improve comfort and safety, thus making lasting contributions to increasing productivity.

▶ AWARE OF THE FUTURE.
▶ DEVELOPING IDEAS.
▶ LIVING TECHNOLOGY.
▶ MASTERING CHALLENGES.